Logarithmic Comparison Theorem versus Gauss–manin System for Isolated Singularities

نویسنده

  • MATHIAS SCHULZE
چکیده

For quasihomogeneous isolated hypersurface singularities, the logarithmic comparison theorem has been characterized explicitly by Holland and Mond. In the nonquasihomogeneous case, we give a necessary condition for the logarithmic comparison theorem in terms of the Gauss–Manin system of the singularity. It shows in particular that the logarithmic comparison theorem can hold for a nonquasihomogeneous singularity only if 1 is an eigenvalue of the monodromy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic vector fields and multiplication table

Susumu TANABÉ Abstract. This is a review article on the Gauss-Manin system associated to the complete intersection singularities of projection. We show how the logarithmic vector fields appear as coefficients to the Gauss-Manin system (Theorem 2.7). We examine further how the multiplication table on the Jacobian quotient module calculates the logarithmic vector fields tangent to the discriminan...

متن کامل

Susumu Tanabé

Susumu TANABÉ Abstract. This is a review article on the Gauss-Manin system associated to the complete intersection singularities of projection. We show how the logarithmic vector fields appear as coefficients to the Gauss-Manin system (Theorem 2.7). We examine further how the multiplication table on the Jacobian quotient module calculates the logarithmic vector fields tangent to the discriminan...

متن کامل

ar X iv : m at h / 99 06 12 9 v 1 [ m at h . A G ] 1 8 Ju n 19 99 ALGEBRAIC GAUSS - MANIN SYSTEMS AND BRIESKORN MODULES

We study the algebraic Gauss-Manin system and the algebraic Brieskorn module associated to a polynomial mapping with isolated singularities. Since the algebraic GaussManin system does not contain any information on the cohomology of singular fibers, we construct a non quasi-coherent sheaf which gives the cohomology of every fiber. Then we study the algebraic Brieskorn module by comparing it wit...

متن کامل

ar X iv : m at h / 99 06 12 9 v 2 [ m at h . A G ] 1 4 D ec 1 99 9 ALGEBRAIC GAUSS - MANIN SYSTEMS AND BRIESKORN MODULES

We study the algebraic Gauss-Manin system and the algebraic Brieskorn module associated to a polynomial mapping with isolated singularities. Since the algebraic GaussManin system does not contain any information on the cohomology of singular fibers, we first construct a non quasi-coherent sheaf which gives the cohomology of every fiber. Then we study the algebraic Brieskorn module, and show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008